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Abstract

The self-consistent field concept is extended to the determination of the effective thermal conductivity of mixtures

containing composite spheres randomly distributed in a continuous medium. Contact resistance is allowed for at the

interface between the spheres and the continuous phase. A simple, yet exact, analytical solution is derived by first

determining the temperature distribution for particle/continuous phase spheres as they are surrounded by an extensive

effective medium. Special cases of the general solution are developed which correspond to various types of ideal particle/

continuum behaviors. One category-perfect contact with negligible core gas heat conduction-is a useful model for many

syntactic foams. Under these conditions, it is shown that the ratio of the effective conductivity of the medium to the

conductivity of the continuous phase depends on a single parameter. The �critical value’ of this parameter is determined

for which this ratio is unity. The result is consistent with prior studies of critical conditions in composite media.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Various approaches for characterizing the effective

thermal, electrical, and elastic properties of composite

media have been introduced since Maxwell’s seminal

work on spherical particle suspensions more than a

century ago [1]. Apart from the large number of results

which are based on either highly approximated micro-

models or ad hoc mixing rules, several approaches based

on reasonable physical models have also been estab-

lished and refined to include the effects of various par-

ticle shapes plus imperfect thermal contact between the

particle surface and the continuous medium. Such

studies include: exact mathematical analysis of dilute

systems in which bounds are established on the effective

properties, and asymptotic behavior is determined (see,

for example, Beasley and Torquato [2], and Thovert and

Acrivos [3]); exact mathematical analysis of various

regular arrays of particles (see, for example, McKenzie

et al. [4], Gu and Tao [5], Gu and Liu [6], Torquato and
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Rintoul [7], and Cheng and Torquato[8]); numerical

simulation of Brownian diffusion of pulsed sources

through particle arrays (see, for example, Torquato and

Kim [9], and Kim and Torquato [10]); the self-consistent

field concept for analyzing non-dilute, non-regularly

spaced particles (see, for example, Hashin [11], Ben-

veniste and Miloh [12], and Benveniste [13]); and the

technique of �successive embedding of effective media’ to

treat multi-coated cylinders or spheres (see, for example,

Schulgasser [14], and Milgrom and Shtrikman [15]).

The purpose of the present study is to establish within

the self-consistent field model, an analytical solution for

the effective conductivity of a medium in which composite

spheres are randomly distributed throughout a continu-

ous phase. The composite spheres are taken to have a

homogeneous core surrounded by a homogeneous

spherical shell of a thermally different material. Also,

contact resistance is allowed to exist between the outer

surface of the shell and the continuous medium in which

it is embedded. The motivation for this study was the

analysis of syntactic foam insulation produced by mixing

hollow glass microspheres into various plastic resins.

Hence, computations using parameters which are char-

acteristic of such systems will also be presented.
ed.
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Nomenclature

h contact conductance

H negative of temperature gradient

k thermal conductivity

kmn thermal conductivity ratio (¼ km=kn)
Pm Legendre polynomial, mth order

q heat flux

r radial coordinate

T temperature

vf particulate volume fraction (¼ ðr2=r1Þ3)
v volume fraction

vmn volume fraction ratio (¼ vm=vn)
V cell volume (¼ 4pr31=3)

Greek symbols

a magnitude of H in the effective medium

b dimensionless contact conductance (¼ hr=k)
d particle wall thickness

h polar angle

Subscripts

0 effective medium’s numerical index

1 continuous medium

2 particle shell

3 particle core

c critical condition (keff ¼ k1)
eff effective medium

z z-component of vector

Superscript

overbar volume average

θ
≤ <∞

Fig. 1. Geometry of cell for self-consistent field analysis of

composite spheres randomly mixed into a continuum. The cell

(06 r6 r1) is embedded in the effective medium (r1 6 r < 1).

The temperature distribution is azimuthally independent.
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2. The self-consistent approximation

The self-consistent approximation is based on the

following concept. Consider a slab of material composed

of composite spheres distributed throughout a continu-

ous phase. A temperature difference is imposed across

the slab and causes a flow of heat through the medium.

The effective thermal conductivity of the medium is de-

fined as the ratio of the induced heat flux to the imposed

temperature difference, and the effective temperature

gradient is the imposed temperature difference divided

by the slab thickness. Using these effective quantities, the

mixture of continuous phase and spheres is then repre-

sented as an effective homogeneous medium.

To determine the effective thermal conductivity of

this medium in terms of the thermal conductivities of the

constituent phases and their spatial distribution, the

following concept is used. Consider one sphere to be

surrounded by a volume of continuous medium in the

same proportion as in the mixture as a whole (i.e., the

same volume fraction). Treat this sphere-continuum

composite unit as being embedded in the macroscale

effective homogeneous medium. Then, impose a uniform

temperature gradient in the surrounding macroscale

effective medium and compute the heat transfer occur-

ring through the sphere-continuum composite unit that

is embedded in it. The ratio of the average flux in the

unit to the average temperature gradient in the unit then

defines the effective thermal conductivity. It will depend

on the thermal conductivities and volumetric distribu-

tions of the constituent phases.

An essential question regards the shape to use for the

continuous phase that surrounds the sphere. For media

in which the spheres are distributed in a regular lattice

arrangement, this shape would be dictated by the shape
of a unit cell. For randomly oriented spheres, however,

some average shape is needed. Conventionally, the shape

taken for the continuous phase in the basic unit is

spherical. Therefore, the geometry to be analyzed in the

present application of the self-consistent field theory is

as shown in Fig. 1.
3. Analysis

A uniform temperature gradient is imposed in the

effective medium at large distances from the spherical

unit embedded in it. The spherical unit is comprised of a
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composite particle surrounded by a layer of the contin-

uous medium (see Fig. 1). Thermal contact resistance

exists at the interface of the sphere and the surrounding

continuous phase, but not at the core/shell interface

within the particle.

The temperature distribution is defined by azimuth-

ally independent steady-state heat conduction:

r2Tn ¼
1

r2
o

or
r2
oTn
or

� �
þ 1

r2 sin h
o

oh
sin h

oTn
oh

� �
¼ 0

ð1Þ

where n ¼ 0, 1, 2, 3, with 0 designating the effective

medium surrounding the spherical cell (i.e., k0 ¼ keff ).
The solution of Eq. (1) in each medium may be written

as

Tn ¼
X1
m¼0

an;mrm
�

þ bn;mr�ðmþ1Þ�Pmðcos hÞ ð2Þ

where Pmðcos hÞ is the mth degree Legendre polynomial.

Note that in the effective medium far from the sphere,

the temperature gradient and heat flux are constants.

Taking these to be aligned with the z-direction:

Heff � �ðrT Þeff ¼ k̂a; const: ð3Þ

qeff ¼ keffHeff ¼ k̂q0; const: ð4Þ

Therefore, the asymptotic boundary condition on the

temperature may be written as

lim
ðr!1;hÞ

T0ðr; hÞ ¼ �az ¼ �ar cos h ð5Þ

Noting that P1ðcos hÞ ¼ cos h, it is seen that in the

effective medium (0), the infinite series of orthogonal

polynomials reduces to just the n ¼ 1 term. The

boundary conditions connecting each medium then im-

pose this same reduction to each Tnðr; hÞ, resulting in

Tnðr; hÞ ¼ ðAnr þ Bnr�2Þ cos h ð6Þ

Applying the asymptotic boundary condition (r ! 1)

results in: A0 ¼ �a. Also, since the solution must be fi-

nite at r ¼ 0, B3 ¼ 0. The six boundary conditions re-

quired for determining the remaining six coefficients are

� knþ1ðoTnþ1=orÞrnþ1 ;h

¼ �knðoTn=orÞrnþ1 ;h
ðn ¼ 0; 1; 2Þ ð7Þ

¼ h21½T2ðr2; hÞ � T1ðr2; hÞ� ðn ¼ 1Þ ð8Þ

Tnþ1ðrnþ1; hÞ ¼ Tnðrnþ1; hÞ ðn ¼ 0; 2Þ ð9Þ

where h21 is the contact conductance at the interface

between the sphere and the continuous medium.

The six equations above were solved algebraically.

Introducing the following definitions: A0
n � An=a,

(n ¼ 1; 2; 3); B0
n � ðr�3

n =aÞBn, (n ¼ 1; 2); B0
0 � ðr�3

1 =aÞB0,
the coefficients in the temperature distribution are found

to be

B0
0 ¼ ½�ðk01 � 1Þ þ 3B0

1�=ð2k01 þ 1Þ ð10Þ

A0
1 ¼ �½3k01 þ 2ðk01 � 1ÞB0

1�=ð2k01 þ 1Þ ð11Þ

B0
1 ¼ 3f½�ðb�1

2 þ 1Þ þ k21�vf3ðk32 þ 2Þ � ½ð2b�1
2 � 1Þ

� 2k21�ðk32 � 1Þg=D ð12Þ

A0
2 ¼ �9v�1

f vf3ðk32 þ 2Þ=D ð13Þ

B0
2 ¼ 9v�1

f ðk32 � 1Þ=D ð14Þ

A0
3 ¼ �27v�1

f vf3=D ð15Þ

where

D ¼ �½ð2k01 þ 1Þ � 2vfðk01 � 1Þ�ðk32 � 1Þ
� ½2� b2ð2k21 þ 1Þ�=ðvfb2k01Þ þ 3ðk32 � 1Þ
� ½2ð2k01 þ 1Þ � b2ð2k01 þ 1Þ�=ðvfb2k01Þ
þ vf3ðk32 þ 2Þf½2þ b2ðk21 þ 2Þ�ð2k01 þ 1Þ
þ 2vf ½1� b2ðk21 � 1Þ�ðk01 � 1Þg=ðvfb2k01Þ ð16Þ

in which

kmn ¼ km=kn ð17Þ

b2 ¼ h21r2=k2 ð18Þ

vf ¼ ðr2=r1Þ3 ¼ volume fraction of particles ð19Þ

vf3 ¼ vf=v3 ¼ ðr2=r3Þ3 ð20Þ

It is to be noted that

r3 ¼ r2 � d ð21Þ

v3f ¼ v�1
f3 ¼ ð1� d=r2Þ3 ð22Þ

where d is the wall thickness and 06 v3f 6 1.

Using the above coefficients, the temperature distri-

bution in each material may then be written from Eq.

(6). The distributions of temperature gradient and heat

flux then follow by differentiation.

For the effective medium, noting that (keff � k0),

H � �rT ¼ êiHi ð23Þ

q � keffH ¼ êiqi ð24Þ

where êi is the unit vector in the ith coordinate direction.

From the results for the temperature distribution within

the basic cell, the effective thermal conductivity is eval-

uated as

keff ¼ qi=Hi ð25Þ

where the overbar indicates a volume average over the

cell volume, V ¼ ð4pr31=3Þ:

�f ¼ ð1=V Þ
Z
V
f dV ð26Þ
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Due to symmetry, only the averaged z-components are

non-zero. They are given by

�qz ¼ �qz;1v1 þ �qz;2v2 þ �qz;3v3 ð27Þ

where

�qz;n ¼ knHz;n ð28Þ

in which

Hz ¼ H 0
z ¼ Hz;1v1 þ Hz;2v2 þ Hz;3v3 þ J ð12Þ

z vf ð29Þ

where the last term in Eq. (29) arises from the temper-

ature discontinuity at the interface between materials 1

and 2 (at r ¼ r2); it is given by

J ð12Þ
z ¼ ðA2 � A1Þ þ ðB2 � B1Þr�3

2 ð30Þ

In the above equations,

�fn ¼ ð1=VnÞ
Z
Vn

fn dVn ð31Þ

which is the volume average of function fn over the

volume of the nth material, and

vn ¼ ðVn=V Þ ð32Þ

which is the volume fraction of the nth material in the

cell. The value of vn is traditionally taken to be the same

as the volume fraction of the nth material in the com-

posite medium as a whole. Therefore, the cell composi-

tion is identical to that of the bulk medium. This, in

turn, defines the value of cell volume V and hence r1.
Consequently,

�qz ¼ keffH 0
z ¼ k1Hz;1v1 þ k2Hz;2v2 þ k3Hz;3v3 ð33Þ

and, therefore, the effective conductivity of the medium

becomes:

keff ¼
k1Hz;1v1 þ k2Hz;2v2 þ k3Hz;3v3

Hz;1v1 þ Hz;2v2 þ Hz;3v3 þ J ð12Þ
z vf

ð34Þ

Using Eq. (33), this also can be written as

keff ¼ k1 þ ðk2 � k1Þ
Hz;2

H 0
z

v2 þ ðk3 � k1Þ
Hz;3

H 0
z

v3 � k1
J ð12Þ
z

H 0
z

vf

ð35Þ

Note from Eq. (3) that H 0
z ¼ a.

With the temperature distributions in each material

being of the form:

Tnðr; hÞ ¼ ðAnr þ Bnr�2Þ cos h ð36Þ

the corresponding z-components of the temperature

gradients may be written as

�Hz;n ¼
oTn
oz

¼ An þ ðsin2 h � 2 cos2 hÞr�3Bn ð37Þ
The average of the above over the volume of the nth
material follows directly:

Hz;n ¼ �An ð38Þ

Then, by combining Eqs. (10)–(16), (30), (35) and

(38), and performing considerable algebraic manipula-

tion, the following simple expression may be derived for

the effective thermal conductivity:

keff ¼
2ð1� vfÞF � 3b2U
ð2þ vfÞF � 3b2U

� �
k1 ð39Þ

where F and U are functions that naturally occur while

performing the algebra:

F � ðk32 � 1Þ½2� b2ð2k21 þ 1Þ� þ ðk32 þ 2Þ
� ½1� b2ðk21 � 1Þ�vf3 ð40Þ

U ¼ 2ð1� vf3Þk21 � ð2þ vf3Þk31 ð41Þ

This �primary’ form of the result is most useful to those

who perform analyses using the effective medium theory

since the manner in which it is written provides an

indication of the algebraic steps used derive it.

On the other hand, when applying the result it is of

interest to group together terms proportional to the

contact conductance (b2 ¼ h21r2=k2). Doing this results

in the following form for the effective thermal conduc-

tivity:

keff ¼
2ð1� vfÞW þ b2HN

ð2þ vfÞW þ b2HD

� �
k1 ð42Þ

where

W ¼ ð2þ vf3Þk32 � 2ð1� vf3Þ ð43Þ

and

HN ¼ ð1� vfÞ½2ð1þ 2vf3Þ � 2ð1� vf3Þk32�
þ ð1þ 2vfÞ½ð2þ vf3Þk31 � 2ð1� vf3Þk21� ð44Þ

HD ¼ ð2þ vfÞ½ð1þ 2vf3Þ � ð1� vf3Þk32�
þ ð1� vfÞ½ð2þ vf3Þk31 � 2ð1� vf3Þk21� ð45Þ

Simplification of the above general result to forms that

correspond to various ideal physical models will now be

considered.
4. Special cases

4.1. Ideal thermal contact (b2 ! 1)

When the contact resistance between the particles

and the continuum is negligible, the contact conduc-

tance, h21, tends toward infinity, resulting in b2 ! 1. In

this limit, keff is given by

keff ¼ ðHN=HDÞk1 ð46Þ
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4.2. Ideal conducting particles (k21 ! 1 and k23 ! 1;

b2 6¼ 0)

This limit, which corresponds to the case of hollow

metal particles dispersed in a dielectric continuum, is

given by

keff ¼
1þ 2vf
1� vf

� �
k1 ð47Þ
4.3. Ideal insulating particles (k21 ! 0 and k23 ! 0; or

b2 ! 0)

Particles may inhibit the flow of heat throughout

their entire cross section by having either a thermal

conductivity of the outer shell which is vanishingly

small, k21 ¼ ðk2=k1Þ ! 0 and k23 ¼ ðk2=k3Þ ! 0, or by

experiencing an infinite contact resistance with the

continuum (h21 ! 0). Either of these conditions is

physically equivalent to having voids of radius r2 dis-

tributed throughout the continuum. The limiting form

for the effective conductivity in these cases (i.e. k21 ! 0

and k23 ! 0; or b2 ! 0) is given by

keff ¼
2ð1� vfÞ
ð2þ vfÞ

� �
k1 ð48Þ

This agrees with Hashin’s [11] result.
4.4. Uniform particle (k32 ¼ 1)

The composite sphere will behave as a uniform

sphere when the shell and core have the same thermal

conductivity (k3 ¼ k2). In this limit, k32 ¼ 1 and k31 ¼
k21. The effective conductivity is then given by

keff ¼
2ð1� vfÞ þ b2½2ð1� vfÞ þ ð1þ 2vfÞk21�
ð2þ vfÞ þ b2½ð2þ vfÞ þ ð1� vfÞk21�

k1 ð49Þ

This agrees with the result of Benveniste [13].
Fig. 2. Excellent thermal contact with the continuum (b ! 1)

and negligible core gas conduction (k32 ¼ 0 ¼ k31). The effective
thermal conductivity (k01 ¼ keff=k1) depends only on (Xvf ).
4.5. Ideal hollow particle (k3 ¼ 0)

Hollow spheres generally contain residual gas in their

cores due to the nature of the various processes used to

produce such particles. The thermal conductivity of this

gas, k3, is usually much smaller than the conductivity of

the solid shell that surrounds it, k2. Hence, a useful limit

is one for which k32 ¼ 0 ¼ k31. In this limit, the effective

thermal conductivity becomes:

keff ¼ 2
2þ b2ðxf3 þ xfk21Þ

2x�
f þ b2ðx�

fxf3 þ 2k21Þ

� �
k1 ð50Þ

where

xf ¼ ð1þ 2vfÞ=ð1� vfÞ ð51Þ
x�
f ¼ ð2þ vfÞ=ð1� vfÞ ð52Þ

xf3 ¼ ð2vf3 þ 1Þ=ðvf3 � 1Þ ð53Þ
4.6. Typical hollow microspheres: ideal (k31 ¼ 0 ¼ k32);
no contact resistance (b2 ! 1)

Actual particle dispersions may often be character-

ized by assuming that the continuous phase is in inti-

mate contact with the particles (b2 ! 1) and that the

residual gas in the hollow core contributes little to the

conduction of heat across the sphere (k31 ¼ 0 ¼ k32).
The effective conductivity under these conditions follows

directly from the previous result:

keff ¼
2ðxf3 þ xfk21Þ
ðx�

fxf3 þ 2k21Þ

� �
k1 ð54Þ

Upon further rearrangement, using Eqs. (51)–(53), a

surprisingly simple form is obtained for this case:

keff ¼
1þ 2Xvf
1� Xvf

� �
k1 ð55Þ

where

X ¼ ðg � 1Þ=ðg þ 2Þ ð56Þ

in which

g ¼ 2k21=xf3 ð57Þ

Eq. (55) demonstrates that the dimensionless effective

conductivity (k01 ¼ keff=k1) for this category of com-

posites depends on only a single variable: (Xvf ). This
relation is plotted in Fig. 2.

Although the single line result in Fig. 2 is the com-

plete solution, when the performance of several com-

posites are to be compared, it is useful to plot instead the

keffðvfÞ curve for each material. Fig. 3 illustrates the

nature of plotting the data this way. The present theory



Fig. 3. Excellent thermal contact with the continuum (b ! 1)

and negligible core gas conduction (k32 ¼ 0 ¼ k31). Plot of k01 as
k01ðvfÞ with X as a parameter enables the graphical determi-

nation of X from experimental data. Different types of particles

have different X.
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shows that for such plots, each composite is represented

by a constant-X line. Further, Eq. (55) indicates that the

X-value for a given composite may be obtained from the

experimentally measured slope of k01ðvfÞ in the limit of

vanishing particle concentration vf ! 0,

ðdk01=dvfÞjvf!0 ¼ 3X ð58Þ

The range of physically allowable values for X may

be determined as follows. First, it is useful to transform

from the variable vf3, which has a semi-infinite range (1

to1), to its inverse, v3f ¼ 1=vf3, whose range is bounded
(06 v3f < 1). The variable v3f is given by

v3f ¼ ðr3=r2Þ3 ¼ ð1� d=r2Þ3 ð59Þ

The variables xf3 and X may then be written in terms of

v3f and k21:

xf3 ¼ ð2þ v3fÞ=ð1� v3fÞ ð60Þ

X ¼ 2ð1� v3fÞk21 � ð2þ v3fÞ
2ð1� v3fÞk21 þ 2ð2þ v3fÞ

ð61Þ

Since 06 v3f < 1, it follows that the ranges across which

X varies are given by

� 1

2
< X6

k21 � 1

k21 þ 2

� �
6 0; 06 k21 6 1

6 1; 16 k21

	
ð62Þ

Note that jXj6 1, and therefore jXvf j < 1. Hence, many

composites will be characterized by jXvf j � 1 across the

entire range of vf in which they will be used. When this is

the case, Eq. (55) reduces to

k01ðvfÞeff jðXvf3Þ�1 ’ 1þ 3Xvfð1þ XvfÞ � 1þ 3Xvf ð63Þ

indicating that a linear dependence of k01 on (Xvf )
should often be observed.
4.7. Critical condition (keff ¼ k1) for typical hollow

microspheres (k3 ¼ 0 with b2 ! 1)

The condition under which the effective conductivity

of the composite medium equals the conductivity of the

pure continuous phase is known as the critical condition

[1,7]. In the present context, the critical condition indi-

cates whether it will be possible to augment or diminish

the thermal conductivity of a medium by mixing into it

various types of particles.

The critical condition (c) is found by evaluating Eq.

(55) for keff ¼ k1ðk01 ¼ 1Þ:

Xc ¼ 0 or

gc ¼ ð2k21=xf3Þc ¼ 1



c ) ðkeff ¼ k1Þ ð64Þ

In terms of the usual design variables this may be written

as

2
k2
k1

� �
c

1� ð1� d=r2Þ3c
2þ ð1� d=r2Þ3c

" #
¼ 1 ð65Þ

Note that keff >
<
k1 according to X >

<
0 or ð2k21=xf3Þ >

<
1.
4.7.1. Microballoons/microbubbles

Further simplification follows for thin-walled hollow

microspheres, ðd=r2Þ � 1. Such hollow microspheres are

commonly referred to as either microballoons or micro-

bubbles. For these particles, ð1� d=r2Þ3 � ½1� 3ðd=r2Þ�
and, hence, the critical condition reduces to

2ðk2=k1Þcðd=r2Þc ¼ 1 ðd=r2Þ � 1 ð66Þ

It is to be noted that the above relation corresponds to

the �critical conductance’ found in [7] under the condi-

tion of vanishing �sphere conductivity, r2’.

From Eq. (66) it is seen to be possible to reduce (in-

crease) the conductivity of a given continuum (k1) by

adding microballoons of wall thickness (d=r2) when they

are made of a material whose thermal conductivity is

smaller (larger) than the critical value: k2 < 0:5k1=ðd=r2Þ.
Similarly, for a given continuum (k1) and particle

material (k2), the effective thermal conductivity of the

medium (keff ) can be reduced (increased) from k1 when

the microballoons have wall thicknesses smaller (larger)

than the critical value: ðd=r2Þ < 0:5ðk1=k2Þ.
5. Calculations

The dimensionless effective thermal conductivity

(k01 ¼ keff=k1) for composite spheres that are randomly

distributed in a continuum and have contact resistance

at the sphere-continuum interface is seen to depend on

the following dimensionless quantities:

k01 ¼ f ðvf ; vf3; k21; k31; b2Þ ð67Þ



Fig. 5. Alternative method for plotting the interrelationship

between the three variables (k01; b2; v3f ). Same data as for Fig. 4.
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Parametric variations involving three variables at a time

will now be considered. Since many applications involve

the use of hollow spheres, the following limited set of

calculations are presented for the condition k31 ¼
0 ¼ k32. Also, the volume fraction of particles is held

fixed at vf ¼ 0:35 throughout. The ranges considered for

the continuum and sphere thermal conductivities are

taken to correspond to a dielectric continuua (k1 � 0:2
W/mK) and glass/ceramic particles at partial to full

density (k2 � 0:4–2 W/mK); the corresponding range of

the relative conductivity is 26 k21 6 10. The wall thick-

ness is nominally taken to range from fully solid parti-

cles (d ¼ r2) to microballoons, for which 100 lm
diameter particles (r2 � 50 lm) typically have sub-mi-

cron thick walls (d � 0:5 lm) [16]; hence, 0:016
ðd=r2Þ6 1 and, correspondingly, 0:97P v3f P 0.

Fig. 4 illustrates the dependence of the effective

conductivity (k01) on the contact conductance (b2) for

various wall thicknesses (v3f ). Note that at small b2, the

curves for all wall thicknesses converge to k01 ¼ 0:55,
consistent with Eq. (48). At large b2, each vf curve

converges to the appropriate b2 ! 1 value given by

Eq. (54) or (55). Fig. 5 illustrates the markedly different

graphical appearance which the same results acquire

when plotted in terms of level contours of the effective

conductivity. As will be discussed below, this type of

plot can be useful when assessing the effectiveness of

different types of particles in achieving a thermal design

requirement.

The influence of particle wall thickness and thermal

conductivity on the effective thermal conductivity are

demonstrated in Figs. 6 and 7. Here it is assumed that

there is excellent thermal contact between the particles

and the medium (b2 ! 1). Fig. 6 highlights thin-walled

spheres including microballoons (v3f P 0:9, i.e. ðd=r2Þ6
0:35). It should be noted that when written in these
Fig. 4. The influence of thermal contact conductance, b2 ¼
ðh21r2=k2Þ, and particle wall thickness, v3f ¼ ð1� d=r2Þ3, on the

effective thermal conductivity (k01 ¼ keff=k1). Negligible core gas

conduction (k32 ¼ 0 ¼ k31) and vf ¼ 0:35. Note: for b2 � 1,

curves converge according to Eq. (60); for b2 � 1, behavior

follows Eq. (66) or (67).
variables, the general solution given by Eq. (54), be-

comes:

k01 ¼ 2
ð1� vfÞð2þ v3fÞ þ ð1þ 2vfÞð1� v3fÞk21
ð2þ vfÞð2þ v3fÞ þ 2ð1� vfÞð1� v3fÞk21

� �
ð68Þ

A practical point should also be noted with respect to

the format used for this figure. That is, this type of plot

can be helpful in assessing which, if any, particles are

capable of meeting a design requirement for the effective

thermal conductivity. A given type of particle is char-

acterized by its relative thermal conductivity (k21 ¼ k2=
k1) and dimensionless wall thickness (v3f ¼ ð1� d=r2Þ3).
Since these are the axes of this plot, each type of particle

will be represented by a different point on the plane and

may be judged acceptable or unacceptable according to

which side of the required iso-k01 curve it falls.

Finally, Fig. 7 shows the same basic interrelation

k01ðk21; v3f ) but by using xf3 as the wall thickness vari-

able in place of v3f . This was done since, as indicated by

the derivation of Eqs. (50) and (54), xf3 is the �natural’
mathematical variable for describing this phenomena in

contrast to vf3, which is the more physically meaningful

variable. The mathematical form of the variation de-

picted in Fig. 7 may be deduced from Eq. (54) by using

the definitions in Eqs. (51)–(53). Arranging the variables

into the form k21ðxf3Þ with k01 as a parameter, the rela-

tion becomes:

k21 ¼
1

2

2� k01x�
f

k01 � xf

� �
xf3 ð69Þ

Note that unlike the relation between k21 and v3f , the
relation between k21 and xf3 is linear.



Fig. 6. The interrelationship between the effective conductivity,

k01 ¼ keff=k1, the particle conductivity, k21 ¼ k2=k1, and the

particle wall thickness, v3f ¼ ð1� d=r2Þ3 for thin-walled spher-

ical shells including microballoons ððd=r2Þ � 0:01, or v3f � 0:97).

b2 ! 1; k32 ¼ 0 ¼ k31; vf ¼ 0:35.

Fig. 7. An alternative plot for the (k01; k21; v3f ) data of Fig. 6.

Note that the relationship between k21 and xf3 is linear––Eq.

(69).
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6. Conclusions

The self-consistent field theory was employed to de-

rive the effective thermal conductivity of mixtures pro-

duced by randomly distributing composite spheres

throughout a continuum, and having imperfect thermal

contact between the surfaces of the spheres and the
continuous phase. The present result extends previous

studies which considered such spheres to be homoge-

neous. An exact, yet simple, analytical result was ob-

tained. Also derived were relations which apply to

various idealizations. For the case representative of

many syntactic foams, it was found that the dimen-

sionless effective conductivity depends on a single vari-

able (Xvf ), and that the conductivity of the continuum

may be increased or decreased by adding hollow spheres

to it depending on whether the X-value for the spheres is

greater or less than zero, respectively.
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